Using Fe⁵⁵ X-Rays to Characterize CCDs

Andrew Walsworth

Duke University

Goals at BNL

 Investigate lateral field effects in CCD (i.e. tree rings) by looking at ellipticity of Fe⁵⁵ hits

 Check edge effects with real data (Max will have more on edge effects with simulated data)

• Resolve Fe⁵⁵ undersampling issue

Early Results - Flux

- Fe⁵⁵ has characteristic 2 peak signal - k_a and k_b
- k_a approx 7x more frequent than k_b
- Observed distribution quite Gaussian
- Only interested in single-hit clusters

Threshold Value

- What is the ideal threshold value for analyzing footprints?
- Analysis done before background-subtracting implemented
- Sweet spot at ~3020 ADU (~20 w/ background subtracted)

Recent Activities - Undersampling

- Fe⁵⁵ clusters are quite small and prone to undersampling
- Undersampling leads to spiky theta distributions and a bias away from signals that hit at the center of the pixel
- In addition to subpixel sampling, Xi² limits could further mitigate these issues

Before Xi² selection:

After Xi² selection:

Undersampling - The Problem

- Cause Fe⁵⁵ hits are narrow and focused and therefore cover very few pixels (in some cases as few as one)
- Effect The DMStack fitting algorithm cannot accurately represent the true shape of the hit
- Solution Subdivide each pixel into an array of subpixels
- Thanks to Erin for developing and providing the code to subdivide each pixel

Xi² and Sigma Distributions

- Some unexpected behaviors observed in these data sets
- Xi² and Sigma distributions have unexpected humps - potentially a result of CCD
- Distributions otherwise pretty good
- Limiting Xi² to < 400 improves quality of some plots, for example theta distribution

First Look at Edge Effects

- Theta map of ellipse orientation
- Near edge of CCD more ellipses should be oriented toward edge (i.e. standard error should be smaller)
- Initial graphs look promising
- Still work to be done
- Will analyze much more data in the next few days

Entire CCD - Flux

- Early flux results only looked at 1/16 of CCD
- Flux over whole CCD should match same pattern
- It doesn't what is happening?

Problem with CCD?

Unfortunately, it looks like it. There is a clear and obvious discrepancy between the bottom and top halves of the CCD.

Remaining Objectives

- Analyze more data to increase statistics
- Continue looking for edge effects
- Sort out issues with sigma, flux, and error distributions (Xi² might help)
- Further alleviate undersampling so theta distribution is uniform
- Search for tree ring patterns in the data